The human ribonucleotide reductase subunit hRRM2 complements p53R2 in response to UV-induced DNA repair in cells with mutant p53.
نویسندگان
چکیده
Ribonucleotide reductase (RR) is responsible for the de novo conversion of the ribonucleoside diphosphates to deoxyribonucleoside diphosphates, which are essential for DNA synthesis and repair. RR consists of two subunits, hRRM1 and hRRM2. p53R2 is a new RR family member. Because the majority of human tumors possess mutant p53, it is important to know the molecular mechanism by which mutant p53 regulates RR and to what extent. In this study, we investigated the expression and function of p53R2 and hRRM2 after UV treatment in human prostate cancer PC3 cells, which possess mutant p53 with a truncated COOH-terminal, and in human oropharyngeal cancer KB cells, which possess wild-type p53. p53R2 (analyzed by Western blot and standardized relative to Coomassie Blue-stained band) was down-regulated in PC3 cells and up-regulated in KB cells after UV exposure. In contrast, hRRM2 was up-regulated by UV in both PC3 cells and KB cells. hRRM2 and p53R2 mRNA levels were assessed by Northern blot, and the results paralleled that of the Western blot. Coimmunoprecipitation assays using agarose-conjugated goat antihuman RRM1 antibody confirmed that the p53R2 binding to hRRM1 decreased in PC3 cells but increased in KB cells after UV treatment. hRRM2 binding to hRRM1 increased in both cell lines under the same conditions. These results suggest that PC3 cells are deficient in both transcription of p53R2 and binding to hRRM1 in response to UV irradiation. Confocal microscopy further confirmed that these findings were not due to translocation of hRRM2 and p53R2 from the cytoplasm to the nucleus. RR activity was measured following UV treatment and shown to increase in PC3 cells. It was unchanged in proportional of KB cells. The RR activity is consistent with the expression of hRRM2 seen in the Western blots. Thus, we hypothesize that hRRM2 complements p53R2 to form RR holoenzyme and maintain RR activity in PC3 cells after UV treatment. To further confirm this hypothesis, we examined the effect of RRM2 inhibitors on cells exposed to UV. In PC3 cells, hydroxyurea inhibited hRRM2 and resulted in increased sensitivity to UV irradiation. We also examined the effect of UV treatment on the colony-forming ability of cells transfected with hRRM2 as well as p53R2 sense or antisense expression vectors. Expression of antisense hRRM2 in PC3 cells led to decreased hRRM2 expression and resulted in greater sensitivity to UV than observed in wild-type PC3 cells. Taken together, we conclude that UV-induced activation of p53R2 transcription and binding of p53R2 to hRRM1 to form RR holoenzyme are impaired in the p53-mutant cell line PC3.
منابع مشابه
Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits.
Ribonucleotide reductase (RR) plays a key role in the synthesis of DNA and is the only enzyme responsible for the reduction of ribonucleotides to their corresponding deoxyribonucleotides, providing a balanced supply of precursors for DNA synthesis and repair. There are three known human RR subunits, hRRM1, hRRM2, and p53R2, which is encoded by a p53 target gene. It is not clear whether p53 and ...
متن کاملInhibition of the p53R2 Subunit of Human Ribonucleotide Characterization of Enzymatic Properties and In Vitro
p53R2 is a newly identified subunit of ribonucleotide reductase (RR) and plays a crucial role in supplying precursors for DNA repair in a p53-dependent manner. In our current work, all three human RR subunit proteins (p53R2, hRRM2, and hRRM1) were prokaryotically expressed and highly purified. Using an in vitro [H]CDP reduction assay, the activity of RR reconstituted with either p53R2 or hRRM2 ...
متن کاملAdvances in Brief In Vitro Characterization of Enzymatic Properties and Inhibition of the p53R2 Subunit of Human Ribonucleotide Reductase
p53R2 is a newly identified subunit of ribonucleotide reductase (RR) and plays a crucial role in supplying precursors for DNA repair in a p53-dependent manner. In our current work, all three human RR subunit proteins (p53R2, hRRM2, and hRRM1) were prokaryotically expressed and highly purified. Using an in vitro [H]CDP reduction assay, the activity of RR reconstituted with either p53R2 or hRRM2 ...
متن کاملIn vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase.
p53R2 is a newly identified subunit of ribonucleotide reductase (RR) and plays a crucial role in supplying precursors for DNA repair in a p53-dependent manner. In our current work, all three human RR subunit proteins (p53R2, hRRM2, and hRRM1) were prokaryotically expressed and highly purified. Using an in vitro [(3)H]CDP reduction assay, the activity of RR reconstituted with either p53R2 or hRR...
متن کاملStructurally dependent redox property of ribonucleotide reductase subunit p53R2.
p53R2 is a newly identified small subunit of ribonucleotide reductase (RR) and plays a key role in supplying precursors for DNA repair in a p53-dependent manner. Currently, we are studying the redox property, structure, and function of p53R2. In cell-free systems, p53R2 did not oxidize a reactive oxygen species (ROS) indicator carboxy-H2DCFDA, but another class I RR small subunit, hRRM2, did. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 20 شماره
صفحات -
تاریخ انتشار 2003